排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标

  1. 进一步理解和应用分步计数原理和分类计数原理。
  2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力
  3. 学会应用数学思想和方法解决排列组合问题。

复习巩固

1.分类计数原理(加法原理)

完成一件事,有nn类办法,在第1类办法中有m1m_1种不同的方法,在第2类办法中有m2m_2种不同的方法,…,在第nn类办法中有mnm_n种不同的方法,那么完成这件事共有:

N=m1+m2+...+mnN = m_1 + m_2 + ... + m_n

种不同的方法.

2.分步计数原理(乘法原理)

完成一件事,需要分成nn个步骤,做第1步有m1m_1种不同的方法,做第2步有m2m_2种不同的方法,…,做第nn步有mnm_n种不同的方法,那么完成这件事共有:

N=m1×m2×...×mnN = m_1 \times m_2 \times ... \times m_n

种不同的方法.

3.分类计数原理分步计数原理区别
  1. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
  2. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.

解决排列组合综合性问题的一般过程如下:

  1. 认真审题弄清要做什么事
  2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
  3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。
  4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略

典型例题和策略

一、特殊元素和特殊位置优先

例1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解: 由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有 C31C_3^1
然后排首位共有 C41C_4^1
最后排其它位置共有 A43A_4^3
由分步计数原理得 C31C41A43=288C_3^1 C_4^1 A_4^3 = 288

练习题: 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

注:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

二、相邻元素捆绑

例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法。

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 A55A22A22=480A_5^5 A_2^2 A_2^2 = 480 种不同的排法

练习题: 某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为?

注:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列。

三、不相邻问题插空

例3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有 A55A_5^5 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 A64A_6^4 不同的方法,由分步计数原理,节目的不同顺序共有 A55A64=43200A_5^5 A_6^4 = 43200

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为?

注:元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

四、定序问题倍缩、空位、插入

例4、7人排队,其中甲乙丙3人顺序一定,共有多少不同的排法?

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是: A77/A33A_7^7 / A_3^3

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 ( A74A_7^4 ) 种方法,其余的三个位置甲乙丙共有 ( 1 ) 种坐法,则共有 ( A74A_7^4 ) 种方法。【思考:可以先让甲乙丙就坐吗?】

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 (A41A51A61A71A_4^1 A_5^1 A_6^1 A_7^1 ) 方法

注:定序问题可以用倍缩法,还可转化为占位插。

练习题: 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?

五、重排问题求幂

例5、把6名实习生分配到7个车间实习,共有多少种不同的分法?

解:完成此事共分六步:把第一名实习生分配到车间有7种分法。把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有 767^6 种不同的排法。

注:允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为 mnm_n

练习题:
1)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为 ( )。
2)某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 ( )。

六、环排问题线排

例6、8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即 7!

注:一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有( 1nAnm\frac{1}{n} A_n^m )【待探讨】

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 ( )。

七、多排问题直排

例7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?

解: 8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排。 先排甲乙两个特殊元素有 A42A_4^2 种,再排后4个位置上的特殊元素丙有 A41A_4^1 种,其余的5人在5个位置上任意排列有 A55A_5^5 种,则共有 A42A41A55A_4^2 A_4^1 A_5^5

注:一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究。

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是( )

八、排列组合混合问题先选后排

例8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法。

解:第一步从5个球中选出2个组成复合元共有 C52C_5^2 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有 A44A_4^4 种方法,根据分步计数原理装球的方法共有 (C52A44C_5^2 A_4^4

注:解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有( )种

九、小集团问题先整体后局部

例9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有 A22A_2^2 种排法,再排小集团内部共有 A22A22A_2^2 A_2^2 种排法,由分步计数原理共有 A22A22A22A_2^2 A_2^2 A_2^2 种排法。

注:小集团排列问题中,先整体后局部,再结合其它策略进行处理。

练习题: 1)计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为( )。
2) 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有( )种。

十、元素相同问题隔板

例10、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?

解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有( C96C_9^6 )种分法。

注:将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为 Cn1m1C_{n-1}^{m-1}

练习题: 1) 10个相同的球装5个盒中,每盒至少一个,有多少装法?
2) x+y+z+w=100x+y+z+w=100 求这个方程组的自然数解的组数。

十一、正难则反总体淘汰

例11、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有 C53C_5^3 ,只含有1个偶数的取法 C51C52C_5^1 C_5^2 ,和为偶数的取法共有 C51C52+C53C_5^1 C_5^2 + C_5^3 。再淘汰和小于10的偶数共9种,符合条件的取法共有 C51C52+C539C_5^1 C_5^2 + C_5^3 - 9

注:有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰。

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?

十二、平均分组问题除法

例12、6本不同的书平均分成3堆,每堆2本共有多少分法?

解:分三步取书得 C62C42C22C_6^2 C_4^2 C_2^2 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则 C62C42C22C_6^2 C_4^2 C_2^2 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有 A33A_3^3 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有 C62C42C22/A33C_6^2 C_4^2 C_2^2/A_3^3 种分法。

注:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以 AnnA_n^n (n为均分的组数)避免重复计数。

练习题:

  1. 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?( )
  2. 10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法?( )
  3. 某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,不同的安排方案种数为?( )
十三、合理分类与分步

例13、在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法?

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究。只会唱的5人中没有人选上唱歌人员共有C32C32C_3^2 C_3^2 种,只会唱的5人中只有1人选上唱歌人员 C51C31C42C_5^1 C_3^1 C_4^2 种,只会唱的5人中只有2人选上唱歌人员有 C52C52C_5^2 C_5^2 种,由分类计数原理共有 C32C32+C51C31C42+C52C52C_3^2 C_3^2+C_5^1 C_3^1 C_4^2+C_5^2 C_5^2 种。

本题还有如下分类标准:

  • 以3个全能演员是否选上唱歌人员为标准
  • 以3个全能演员是否选上跳舞人员为标准
  • 以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果

练习题:

  1. 从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有?( )
  2. 3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船,这3人共有多少乘船方法?( )
十四、构造模型

例14、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?

解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有 C53C_5^3 种。

练习题:

  1. 某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?( )
十五、实际操作穷举

例15、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法?

解:从5个球中取出2个与盒子对号有 种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有 2C522C_5^2

练习题:

  1. 同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?( )
  2. 给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有多少种?( )
十六、分解与合成

例16、30030能被多少个不同的偶数整除?

分析:先把30030分解成质因数的乘积形式 30030=2×3×5×7×11×1330030 = 2 × 3 × 5 × 7 × 11 × 13

依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为: C51+C52+C53+C54+C55C_5^1+C_5^2+C_5^3+C_5^4+C_5^5

注:分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略。

练习题:正方体的8个顶点可连成多少对异面直线?

解:我们先从8个顶点中任取4个顶点构成四体共有体共 C8412=58C_8^4-12=58,每个四面体有3对异面直线,正方体中的8个顶点可连成3×58=174对异面直线。

十七、化归

例17、25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方法有 C31C21C11C_3^1 C_2^1 C_1^1种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有 C53C53C_5^3 C_5^3 选法所以从5×5方阵选不在同一行也不在同一列的3人有 C53C53C31C21C11C_5^3 C_5^3 C_3^1 C_2^1 C_1^1 选法。

练习题:

  1. 某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?( )

十八、数字排序问题查字典

例18、由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?

解: N=2A55+2A44+A33+A22+A11=297N=2A_5^5+2A_4^4+A_3^3+A_2^2+A_1^1=297

注:数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。

练习: 用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 ( )

十九、树图

例19、人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有____ N=10

注:对于条件比较复杂的排列组合问题,不易用 公式进行运算,树图会收到意想不到的结果。

练习: 分别编有1,2,3,4,5号码的人与椅,其中i号人不坐i号椅(i=1,2,3,4,5)的不同坐法有多少种?

二十、复杂分类问题表格

例20、有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法

解:

1 1 1 2 2 3
1 2 3 1 2 1
3 2 1 2 1 1
取法 C51C41C_5^1 C_4^1 C51C42C_5^1 C_4^2 C51C43C_5^1 C_4^3 C52C31C_5^2 C_3^1 C52C32C_5^2 C_3^2 C53C21C_5^3 C_2^1

注:一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效果。

二十一、住店法

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。

例21、七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 。

分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得757^5种。

小结

本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题。对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。

答案

  • 1)某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为? ( 20 )
  • 2)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为? ( 30 )
  • 3)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 ( 42 )
  • 4)10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?C105C_{10}^5
  • 5)某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 ( 787^8
  • 6)6颗颜色不同的钻石,可穿成几种钻石圈 ( 120 )
  • 7)有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346
  • 8)一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有(192 )种
  • 9.1)计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 A22A55A44A_2^2 A_5^5 A_4^4
  • 9.2)5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 A22A55A55A_2^2 A_5^5 A_5^5
  • 10.1)10个相同的球装5个盒中,每盒至少一个,有多少装法?C94C_9^4
  • 10.2)x+y+z+w=100x+y+z+w=100 求这个方程组的自然数解的组数。 C1033C_{103}^3
  • 11)我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?
  • 12.1)将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?( C135C84C44/A22C_{13}^5 C_8^4 C_4^4/A_2^2
  • 12.2)10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 (1540)
  • 12.3)某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为____C42C22A62/A22=90C_4^2 C_2^2 A_6^2/A_2^2=90
  • 13.1)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有?(34 )
  • 13.2)3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27)
  • 14.1)某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)
  • 15.1)同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)
  • 15.2)给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 (72)种
  • 17.1)某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?(C73=35C_7^3=35)
  • 18)用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 3140
  • 19)分别编有1,2,3,4,5号码的人与椅,其中i号人不坐i号椅(i=1,2,3,4,5)的不同坐法有多少种?N=44